JDK8 Stream 数据流,大数据量下的性能效率分析

Stream 是Java SE 8类库中新增的关键抽象,它被定义于 java.util.stream (这个包里有若干流类型:Stream<T> 代表对象引用流,此外还有一系列特化流,如 IntStream,LongStream,DoubleStream等 ),Java 8 引入的的Stream主要用于取代部分Collection的操作,每个流代表一个值序列,流提供一系列常用的聚集操作,可以便捷的在它上面进行各种运算。集合类库也提供了便捷的方式使我们可以以操作流的方式使用集合、数组以及其它数据结构;

stream 的操作种类

中间操作
1、当数据源中的数据上了流水线后,这个过程对数据进行的所有操作都称为“中间操作”;
2、中间操作仍然会返回一个流对象,因此多个中间操作可以串连起来形成一个流水线;
3、stream 提供了多种类型的中间操作,如 filter、distinct、map、sorted 等等;
终端操作
1、当所有的中间操作完成后,若要将数据从流水线上拿下来,则需要执行终端操作;
2、stream 对于终端操作,可以直接提供一个中间操作的结果,或者将结果转换为特定的 collection、array、String 等

stream 的特点

1、只能遍历一次:
数据流的从一头获取数据源,在流水线上依次对元素进行操作,当元素通过流水线,便无法再对其进行操作,可以重新在数据源获取一个新的数据流进行操作;
2、采用内部迭代的方式:
对Collection进行处理,一般会使用 Iterator 遍历器的遍历方式,这是一种外部迭代;
而对于处理Stream,只要申明处理方式,处理过程由流对象自行完成,这是一种内部迭代,对于大量数据的迭代处理中,内部迭代比外部迭代要更加高效;

stream 相对于 Collection 的优点

1、无存储:流并不存储值;流的元素源自数据源(可能是某个数据结构、生成函数或I/O通道等等),通过一系列计算步骤得到;
2、函数式风格:对流的操作会产生一个结果,但流的数据源不会被修改;
3、惰性求值:多数流操作(包括过滤、映射、排序以及去重)都可以以惰性方式实现。这使得我们可以用一遍遍历完成整个流水线操作,并可以用短路操作提供更高效的实现;
4、无需上界:不少问题都可以被表达为无限流(infinite stream):用户不停地读取流直到满意的结果出现为止(比如说,枚举 完美数 这个操作可以被表达为在所有整数上进行过滤);集合是有限的,但流可以表达为无线流;
5、代码简练:对于一些collection的迭代处理操作,使用 stream 编写可以十分简洁,如果使用传统的 collection 迭代操作,代码可能十分啰嗦,可读性也会比较糟糕;

stream 和 iterator 迭代的效率比较

好了,上面 stream 的优点吹了那么多,stream 函数式的写法是很舒服,那么 steam 的效率到底怎样呢?
先说结论:
1、传统 iterator (for-loop) 比 stream(JDK8) 迭代性能要高,尤其在小数据量的情况下;
2、在多核情景下,对于大数据量的处理,parallel stream 可以有比 iterator 更高的迭代处理效率;
我分别对一个随机数列 List (数量从 10 到 10000000)进行映射、过滤、排序、规约统计、字符串转化场景下,对使用 stream 和 iterator 实现的运行效率进行了统计,测试代码 基准测试代码链接

测试环境如下:

  1. SystemUbuntu16.04 xenial
  2. CPUIntelCore i7-8550U
  3. RAM16GB
  4. JDK version1.8.0_151
  5. JVMHotSpot(TM)64-BitServer VM (build 25.151-b12, mixed mode)
  6. JVM Settings:
  7. -Xms1024m
  8. -Xmx6144m
  9. -XX:MaxMetaspaceSize=512m
  10. -XX:ReservedCodeCacheSize=1024m
  11. -XX:+UseConcMarkSweepGC
  12. -XX:SoftRefLRUPolicyMSPerMB=100

1、映射处理测试

把一个随机数列( List<Integer>)中的每一个元素自增1后,重新组装为一个新的 List<Integer>,测试的随机数列容量从 10 – 10000000,跑10次取平均时间;
  1. //stream
  2. List<Integer> result = list.stream()
  3. .mapToInt(x -> x)
  4. .map(x ->++x)
  5. .boxed()
  6. .collect(Collectors.toCollection(ArrayList::new));
  7. //iterator
  8. List<Integer> result =newArrayList<>();
  9. for(Integer e : list){
  10. result.add(++e);
  11. }
  12. //parallel stream
  13. List<Integer> result = list.parallelStream()
  14. .mapToInt(x -> x)
  15. .map(x ->++x)
  16. .boxed()

2、过滤处理测试

取出一个随机数列( List<Integer>)中的大于 200 的元素,并组装为一个新的 List<Integer>,测试的随机数列容量从 10 – 10000000,跑10次取平均时间;
  1. //stream
  2. List<Integer> result = list.stream()
  3. .mapToInt(x -> x)
  4. .filter(x -> x >200)
  5. .boxed()
  6. .collect(Collectors.toCollection(ArrayList::new));
  7. //iterator
  8. List<Integer> result =newArrayList<>(list.size());
  9. for(Integer e : list){
  10. if(e >200){
  11. result.add(e);
  12. }
  13. }
  14. //parallel stream
  15. List<Integer> result = list.parallelStream()
  16. .mapToInt(x -> x)
  17. .filter(x -> x >200)
  18. .boxed()

3、自然排序测试

对一个随机数列( List<Integer>)进行自然排序,并组装为一个新的 List<Integer>,iterator 使用的是 Collections # sort API(使用归并排序算法实现),测试的随机数列容量从 10 – 10000000,跑10次取平均时间。整编:微信公众号,搜云库技术团队,ID:souyunku
  1. //stream
  2. List<Integer> result = list.stream()
  3. .mapToInt(x->x)
  4. .sorted()
  5. .boxed()
  6. .collect(Collectors.toCollection(ArrayList::new));
  7. //iterator
  8. List<Integer> result =newArrayList<>(list);
  9. Collections.sort(result);
  10. //parallel stream
  11. List<Integer> result = list.parallelStream()
  12. .mapToInt(x->x)
  13. .sorted()
  14. .boxed()

4、归约统计测试

获取一个随机数列( List<Integer>)的最大值,测试的随机数列容量从 10 – 10000000,跑10次取平均时间;
  1. //stream
  2. int max = list.stream()
  3. .mapToInt(x -> x)
  4. .max()
  5. .getAsInt();
  6. //iterator
  7. int max =-1;
  8. for(Integer e : list){
  9. if(e > max){
  10. max = e;
  11. }
  12. }
  13. //parallel stream
  14. int max = list.parallelStream()
  15. .mapToInt(x -> x)
  16. .max()

5、字符串拼接测试

获取一个随机数列( List<Integer>)各个元素使用“,”分隔的字符串,测试的随机数列容量从 10 – 10000000,跑10次取平均时间;
  1. //stream
  2. String result = list.stream().map(String::valueOf).collect(Collectors.joining(","));
  3. //iterator
  4. StringBuilder builder =newStringBuilder();
  5. for(Integer e : list){
  6. builder.append(e).append(",");
  7. }
  8. String result = builder.length()==0?"": builder.substring(0,builder.length()-1);
  9. //parallel stream

6、混合操作测试

对一个随机数列( List<Integer>)进行去空值,除重,映射,过滤,并组装为一个新的 List<Integer>,测试的随机数列容量从 10 – 10000000,跑10次取平均时间;
  1. //stream
  2. List<Integer> result = list.stream()
  3. .filter(Objects::nonNull)
  4. .mapToInt(x -> x +1)
  5. .filter(x -> x >200)
  6. .distinct()
  7. .boxed()
  8. .collect(Collectors.toCollection(ArrayList::new));
  9. //iterator
  10. HashSet<Integer>set=newHashSet<>(list.size());
  11. for(Integer e : list){
  12. if(e !=null&& e >200){
  13. set.add(e +1);
  14. }
  15. }
  16. List<Integer> result =newArrayList<>(set);
  17. //parallel stream
  18. List<Integer> result = list.parallelStream()
  19. .filter(Objects::nonNull)
  20. .mapToInt(x -> x +1)
  21. .filter(x -> x >200)
  22. .distinct()
  23. .boxed()

7、实验结果总结

从以上的实验来看,可以总结处以下几点:
1、在少低数据量的处理场景中(size<=1000),stream 的处理效率是不如传统的 iterator 外部迭代器处理速度快的,但是实际上这些处理任务本身运行时间都低于毫秒,这点效率的差距对普通业务几乎没有影响,反而 stream 可以使得代码更加简洁;
2、在大数据量(szie>10000)时,stream 的处理效率会高于 iterator,特别是使用了并行流,在cpu恰好将线程分配到多个核心的条件下(当然parallel stream 底层使用的是 JVM 的 ForkJoinPool,这东西分配线程本身就很玄学),可以达到一个很高的运行效率,然而实际普通业务一般不会有需要迭代高于10000次的计算
3、Parallel Stream 受引 CPU 环境影响很大,当没分配到多个cpu核心时,加上引用 forkJoinPool 的开销,运行效率可能还不如普通的 Stream;

8、用 Stream 的建议

1、简单的迭代逻辑,可以直接使用 iterator,对于有多步处理的迭代逻辑,可以使用 stream,损失一点几乎没有的效率,换来代码的高可读性是值得的
2、单核 cpu 环境,不推荐使用 parallel stream,在多核 cpu 且有大数据量的条件下,推荐使用 paralle stream;
3、stream 中含有装箱类型,在进行中间操作之前,最好转成对应的数值流,减少由于频繁的拆箱、装箱造成的性能损失;
本站所有文章均由网友分享,仅用于参考学习用,请勿直接转载,如有侵权,请联系网站客服删除相关文章。若由于商用引起版权纠纷,一切责任均由使用者承担
极客文库 » JDK8 Stream 数据流,大数据量下的性能效率分析

Leave a Reply

欢迎加入「极客文库」,成为原创作者从这里开始!

立即加入 了解更多