• 近期将进行后台系统升级,如有访问不畅,请稍后再试!
  • 极客文库-知识库上线!
  • 极客文库小编@勤劳的小蚂蚁,为您推荐每日资讯,欢迎关注!
  • 每日更新优质编程文章!
  • 更多功能模块开发中。。。

Java中HashMap底层数据结构

HashMap 也是我们使用非常多的 Collection,它是基于哈希表的 Map 接口的实现,以 key-value 的形式存在。在 HashMap 中,key-value 总是会当做一个整体来处理,系统会根据 hash 算法来来计算 key-value 的存储位置,我们总是可以通过 key 快速地存、取 value。下面就来分析 HashMap 的存取。

一、定义

HashMap 实现了 Map 接口,继承 AbstractMap。其中 Map 接口定义了键映射到值的规则,而 AbstractMap 类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实 AbstractMap 类已经实现了 Map,这里标注 Map, LZ 觉得应该是更加清晰吧!
public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, CloneableSerializable
{

    /**
     * The default initial capacity – MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4// aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * An empty table instance to share when the table is not inflated.
     */
    static final Entry<?,?>[] EMPTY_TABLE = {};

    /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     */
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The next size value at which to resize (capacity * load factor).
     * @serial
     */
    // If table == EMPTY_TABLE then this is the initial capacity at which the
    // table will be created when inflated.
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The default threshold of map capacity above which alternative hashing is
     * used for String keys. Alternative hashing reduces the incidence of
     * collisions due to weak hash code calculation for String keys.
     * <p/>
     * This value may be overridden by defining the system property
     * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
     * forces alternative hashing to be used at all times whereas
     * {@code -1} value ensures that alternative hashing is never used.
     */
    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;

}

二、构造函数

HashMap 提供了三个构造函数:
  1. HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。
  2. HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。
  3. HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。
在这里提到了两个参数:初始容量,加载因子。这两个参数是影响 HashMap 性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。
对于使用链表法的散列表来说,查找一个元素的平均时间是 O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为 0.75,一般情况下我们是无需修改的。
HashMap 是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。

三、数据结构

我们知道在 Java 中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap 也是如此。实际上 HashMap 是一个“链表散列”,如下是它数据结构:
(本文图片引用见水印)
从上图我们可以看出 HashMap 底层实现还是数组,只是数组的每一项都是一条链。其中参数 initialCapacity 就代表了该数组的长度。下面为 HashMap 构造函数的源码:
public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException(“Illegal initial capacity: “ +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException(“Illegal load factor: “ +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        init();
    }
从源码中可以看出,每次新建一个 HashMap 时,都会初始化一个 table 数组。table 数组的元素为 Entry 节点。
static class Entry<K,Vimplements Map.Entry<K,V{
        final K key;
        V value;
        Entry<K,V> next;
        int hash;
}
其中 Entry 为 HashMap 的内部类,它包含了键 key、值 value、下一个节点 next,以及 hash 值,这是非常重要的,正是由于 Entry 才构成了 table 数组的项为链表。
上面简单分析了 HashMap 的数据结构,下面将探讨 HashMap 是如何实现快速存取的。

四、存储实现:put(key,vlaue)

首先我们先看源码
public V put(K key, V value{
        //当 key 为 null,调用 putForNullKey 方法,保存 null 与 table 第一个位置中,这是 HashMap 允许为 null 的原因
        if (key == null)
            return putForNullKey(value);
        //计算 key 的 hash 值
        int hash = hash(key.hashCode());                  ——(1)
        //计算 key hash 值在 table 数组中的位置
        int i = indexFor(hash, table.length);             ——(2)
        //从 i 出开始迭代 e,找到 key 保存的位置
        for (Entry<K, V> e = table[i]; e != null; e = e.next) {
            Object k;
            //判断该条链上是否有 hash 值相同的(key 相同)
            //若存在相同,则直接覆盖 value,返回旧 value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;    //旧值 = 新值
                e.value = value;
                e.recordAccess(this);
                return oldValue;     //返回旧值
            }
        }
        //修改次数增加 1
        modCount++;
        //将 key、value 添加至 i 位置处
        addEntry(hash, key, value, i);
        return null;

    }

通过源码我们可以清晰看到 HashMap 保存数据的过程为:首先判断 key 是否为 null,若为 null,则直接调用 putForNullKey 方法。若不为空则先计算 key 的 hash 值,然后根据 hash 值搜索在 table 数组中的索引位置,如果 table 数组在该位置处有元素,则通过比较是否存在相同的 key,若存在则覆盖原来 key 的 value,否则将该元素保存在链头(最先保存的元素放在链尾)。若 table 在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:
1、 先看迭代处。此处迭代原因就是为了防止存在相同的 key 值,若发现两个 hash 值(key)相同时,HashMap 的处理方式是用新 value 替换旧 value,这里并没有处理 key,这就解释了 HashMap 中没有两个相同的 key。
2、 在看(1)、(2)处。这里是 HashMap 的精华所在。首先是 hash 方法,该方法为一个纯粹的数学计算,就是计算 h 的 hash 值。
final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }
HashMap 的底层数组长度总是 2 的 n 次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证 HashMap 的底层数组长度为 2 的 n 次方。当 length 为 2 的 n 次方时,h&(length – 1)就相当于对 length 取模,而且速度比直接取模快得多,这是 HashMap 在速度上的一个优化。至于为什么是 2 的 n 次方下面解释。
我们回到 indexFor 方法,该方法仅有一条语句:h&(length – 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布 table 数据和充分利用空间。
这里我们假设 length 为 16(2^n)和 15,h 为 5、6、7。
当 n=15 时,6 和 7 的结果一样,这样表示他们在 table 存储的位置是相同的,也就是产生了碰撞,6、7 就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看 0-15。
从上面的图表中我们看到总共发生了 8 此碰撞,同时发现浪费的空间非常大,有 1、3、5、7、9、11、13、15 处没有记录,也就是没有存放数据。这是因为他们在与 14 进行&运算时,得到的结果最后一位永远都是 0,即 0001、0011、0101、0111、1001、1011、1101、1111 位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。
而当 length = 16 时,length – 1 = 15 即 1111,那么进行低位&运算时,值总是与原来 hash 值相同,而进行高位运算时,其值等于其低位值。所以说当 length = 2^n 时,不同的 hash 值发生碰撞的概率比较小,这样就会使得数据在 table 数组中分布较均匀,查询速度也较快。
这里我们再来复习 put 的流程:当我们想一个 HashMap 中添加一对 key-value 时,系统首先会计算 key 的 hash 值,然后根据 hash 值确认在 table 中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其 key 的 hash 值。如果两个 hash 值相等且 key 值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的 Entry 的 value 覆盖原来节点的 value。如果两个 hash 值相等但 key 值不等 ,则将该节点插入该链表的链头。具体的实现过程见 addEntry 方法,如下:
void addEntry(int hash, K key, V valueint bucketIndex{
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);

    }

这个方法中有两点需要注意:
一、链的产生。
这是一个非常优雅的设计。系统总是将新的 Entry 对象添加到 bucketIndex 处。如果 bucketIndex 处已经有了对象,那么新添加的 Entry 对象将指向原有的 Entry 对象,形成一条 Entry 链,但是若 bucketIndex 处没有 Entry 对象,也就是 e==null,那么新添加的 Entry 对象指向 null,也就不会产生 Entry 链了。
二、扩容问题。
随着 HashMap 中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响 HashMap 的速度,为了保证 HashMap 的效率,系统必须要在某个临界点进行扩容处理。该临界点在当 HashMap 中元素的数量等于 table 数组长度*加载因子。
但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新 table 数组中的位置并进行复制处理。所以如果我们已经预知 HashMap 中元素的个数,那么预设元素的个数能够有效的提高 HashMap 的性能。

五、读取实现:get(key)

相对于 HashMap 的存而言,取就显得比较简单了。通过 key 的 hash 值找到在 table 数组中的索引处的 Entry,然后返回该 key 对应的 value 即可。
public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }


final Entry<K,V> getEntry(Object key) {

        if (size == 0) {

            return null;

        }



        int hash = (key == null) ? 0 : hash(key);

        for (Entry<K,V> e = table[indexFor(hash, table.length)];

             e != null;

             e = e.next) {

            Object k;

            if (e.hash == hash &&

                ((k = e.key) == key || (key != null && key.equals(k))))

                return e;

        }

        return null;

    }
在这里能够根据 key 快速的取到 value 除了和 HashMap 的数据结构密不可分外,还和 Entry 有莫大的关系,在前面就提到过,HashMap 在存储过程中并没有将 key,value 分开来存储,而是当做一个整体 key-value 来处理的,这个整体就是 Entry 对象。
同时 value 也只相当于 key 的附属而已。在存储的过程中,系统根据 key 的 hashcode 来决定 Entry 在 table 数组中的存储位置,在取的过程中同样根据 key 的 hashcode 取出相对应的 Entry 对象。

丨极客文库, 版权所有丨如未注明 , 均为原创丨
本网站采用知识共享署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议进行授权
转载请注明原文链接:Java 中 HashMap 底层数据结构
喜欢 (0)
[247507792@qq.com]
分享 (0)
勤劳的小蚂蚁
关于作者:
温馨提示:本文来源于网络,转载文章皆标明了出处,如果您发现侵权文章,请及时向站长反馈删除。

欢迎 注册账号 登录 发表评论!

  • 精品技术教程
  • 编程资源分享
  • 问答交流社区
  • 极客文库知识库

客服QQ


QQ:2248886839


工作时间:09:00-23:00